In the design of novel nuclear reactors active systems are replaced by passive ones in order to reduce the risk of failure. For that reason natural circulation is being considered as the primary cooling mechanism in next generation nuclear reactor designs such as the natural circulation boiling water reactor (BWR). In such a reactor, however, the flow is not a controlled parameter but is dependent on the power. As a result, the dynamical behaviour significantly differs from that in conventional forced circulation BWRs. For that reason, predicting the stability characteristics of these reactors has to be carefully studied. In this work, a number of open issues are investigated regarding the stability of natural circulation BWRs (e.g. margins to instabilities at rated conditions, interaction between the thermal hydraulics and the neutronics, and the occurrence of flashing induced instabilities) with a strong emphasis on experimental evidence. The prototypical Economical Simplified BWR (ESBWR) design from the General Electric Company was thereby taken as the reference natural circulation BWR. Two experimental facilities located at the Delft University of Technology were used for that purpose: the GENESIS facility which uses Freon as working fluid and the water based CIRCUS facility.
Contents:

Introduction
- Natural circulation BWRs basic principle
- Classification of BWR instabilities
- High Pressure vs. Low Pressure stability
- Coupled Neutronics – Thermal hydraulics
- Motivation behind the present work
- Outline of this thesis

Downscaling the thermal – hydraulics of natural circulation BWRs: The GENESIS facility
- Design philosophy – The scaling
- Application of the proposed scaling design approach

Experimental investigations on the stability of natural circulation BWRs
- The VRF system
- Stability performance of natural circulation BWRs

An experimental parametric study of natural circulation BWRs stability
- GENESIS improvements
- Parametric study

Experimental and analytical investigations on flashing induced instabilities in a single channel
- The CIRCUS facility in the single chimney configuration
- Experimental results
- A lumped parameter model
- Experimental results vs. numerical results
- A numerical parametric study
- Flashing – induced oscillations in parallel channels
- Description of the CIRCUS facility with two chimneys
- Experimental results

Order form:

If you would like to order one or more copies of the above, please fill in this order form and send it back to:

IOS Press, Promotion Department, Nieuwe Hemweg 6B, 1013 BG, Amsterdam, The Netherlands.

- O I would like to order copies of *Experimental and Numerical Stability Investigations on Natural Circulation Boiling Water Reactors*
 (US$68 / €50 / £34)
- O Please bill me
- O Please charge my credit card
 - O Amer. Express
 - O Euro/Master
 - O Visa
 - Exp. Date
 - Security code
 - Card no.

Name:
Address:
City/Zipcode:
Country:
Email:
Date:
Vat no.:

Visit our website for more information or online ordering:

www.iospress.nl / www.booksonline.iospress.nl